论文标题

通过结构化图像协方差将VAE正规化的压缩感知MRI重建

Compressed Sensing MRI Reconstruction Regularized by VAEs with Structured Image Covariance

论文作者

Duff, Margaret, Simpson, Ivor J. A., Ehrhardt, Matthias J., Campbell, Neill D. F.

论文摘要

目的:本文研究了如何使用对基地图像进行训练的生成模型\ Change \ Change {aS} vriors的逆问题,对生成器可以产生的图像远远惩罚重建。目的是,学识渊博的正则化将为反问题提供复杂的数据驱动先验,同时仍保留对差异正则化方法的控制和见解。此外,无监督的学习,没有配对的训练数据,可以使学习的正规器能够灵活地了解远期问题的变化,例如噪声水平,采样模式或MRI中的线圈灵敏度。 方法:我们利用不仅生成图像的变异自动编码器(VAE),还可以为每个图像生成协方差不确定性矩阵。协方差可以建模由图像中的结构(例如边缘或对象)引起的不确定性依赖性,并提供了从学到的图像的多种形式中提供的新距离度量。 主要结果:我们在FastMRI数据集中评估了这些新颖的生成正规化器,以回顾性的亚采样实值MRI测量。我们将我们提出的学习的正规化与其他未经学习的正规化方法以及无监督和监督的深度学习方法进行了比较。 意义:我们的结果表明,所提出的方法与其他最先进的方法具有竞争力,并且与更改采样模式和噪声水平的行为一致。

Objective: This paper investigates how generative models, trained on ground-truth images, can be used \changes{as} priors for inverse problems, penalizing reconstructions far from images the generator can produce. The aim is that learned regularization will provide complex data-driven priors to inverse problems while still retaining the control and insight of a variational regularization method. Moreover, unsupervised learning, without paired training data, allows the learned regularizer to remain flexible to changes in the forward problem such as noise level, sampling pattern or coil sensitivities in MRI. Approach: We utilize variational autoencoders (VAEs) that generate not only an image but also a covariance uncertainty matrix for each image. The covariance can model changing uncertainty dependencies caused by structure in the image, such as edges or objects, and provides a new distance metric from the manifold of learned images. Main results: We evaluate these novel generative regularizers on retrospectively sub-sampled real-valued MRI measurements from the fastMRI dataset. We compare our proposed learned regularization against other unlearned regularization approaches and unsupervised and supervised deep learning methods. Significance: Our results show that the proposed method is competitive with other state-of-the-art methods and behaves consistently with changing sampling patterns and noise levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源