论文标题

FairClip:基于属性原型学习和表示中和的社会偏见消除

FairCLIP: Social Bias Elimination based on Attribute Prototype Learning and Representation Neutralization

论文作者

Wang, Junyang, Zhang, Yi, Sang, Jitao

论文摘要

近年来,诸如剪辑之类的视觉预训练(VLP)模型已经越来越受欢迎。但是,许多作品发现,隐藏在剪辑中的社会偏见很容易体现在下游任务中,尤其是在图像检索中,这可能会对人类社会产生有害影响。在这项工作中,我们建议FairClip消除基于剪辑的图像检索中的社会偏见,而不会损害检索性能,从而实现了歧义效果与检索性能之间的兼容性。 FairClip分为两个步骤:属性原型学习(APL)和表示中和(RN)。在第一步中,我们提取了剪辑中的Debias所需的概念。我们将查询与可学习的单词矢量前缀作为提取结构。在第二步中,我们首先将属性分为目标和偏置属性。通过分析,我们发现两个属性都会影响偏见。因此,我们尝试通过使用重新代理矩阵(RRM)来消除偏差来实现表示形式的中和。我们将证券效果和检索性能与其他方法进行比较,实验表明FairClip可以达到最佳兼容性。尽管FairClip用于消除图像检索中的偏见,但它可以实现所有夹子下游任务共有的表示形式的中和。这意味着FairClip可以作为与剪辑相关的其他公平问题的一般辩解方法应用。

The Vision-Language Pre-training (VLP) models like CLIP have gained popularity in recent years. However, many works found that the social biases hidden in CLIP easily manifest in downstream tasks, especially in image retrieval, which can have harmful effects on human society. In this work, we propose FairCLIP to eliminate the social bias in CLIP-based image retrieval without damaging the retrieval performance achieving the compatibility between the debiasing effect and the retrieval performance. FairCLIP is divided into two steps: Attribute Prototype Learning (APL) and Representation Neutralization (RN). In the first step, we extract the concepts needed for debiasing in CLIP. We use the query with learnable word vector prefixes as the extraction structure. In the second step, we first divide the attributes into target and bias attributes. By analysis, we find that both attributes have an impact on the bias. Therefore, we try to eliminate the bias by using Re-Representation Matrix (RRM) to achieve the neutralization of the representation. We compare the debiasing effect and retrieval performance with other methods, and experiments demonstrate that FairCLIP can achieve the best compatibility. Although FairCLIP is used to eliminate bias in image retrieval, it achieves the neutralization of the representation which is common to all CLIP downstream tasks. This means that FairCLIP can be applied as a general debiasing method for other fairness issues related to CLIP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源