论文标题
内晕角动量对棒花生/X形的影响
Effects of Inner Halo Angular Momentum on the Peanut/X-shapes of Bars
论文作者
论文摘要
宇宙学模拟表明,由旋转参数($λ$)衡量的Baryonic磁盘周围的暗物质晕圈具有广泛的角臂。在这项研究中,我们将内部角动量($ <$ 30 kpc)的重要性(以光晕旋转参数($ <$ 30 kpc)的形式)使用N体模拟在BAR的世俗演化上测量。对于磁盘,我们将Halo Spin参数$λ$从0到0.1变化为0到0.1,并且相对于磁盘,我们的旋转旋转(prograde)旋转光环和一个反旋转(逆行)晕旋($λ$ = -0.1)。我们报告说,随着光环自旋的增加,屈曲也较早地触发,然后在高旋照晕模型中是第二个屈曲阶段。第二次屈曲的时间尺度明显比第一个屈曲更长。我们发现,与以前的研究不同,我们所有模型中的屈曲后都不会显着降低屈曲后的屈曲后,这提供了有关内晕角动量的作用的新见解。同样,弯曲的条仍可以在世俗进化阶段将明显的角动量传递到光晕,但随着光环自旋的增加而降低。在世俗的演化阶段,对于所有模型,无论光环自旋和相对于磁盘的旋转感如何,条形强度都会增加并饱和到几乎相等的值。与非旋转光晕相比,最终的箱形/花生形状的高旋转光环在内部区域具有更高的角度动量。我们通过磁盘和光晕之间的角动量交换来解释我们的结果。
Cosmological simulations show that dark matter halos surrounding baryonic disks have a wide range of angular momenta, measured by the spin parameter ($λ$). In this study, we bring out the importance of inner angular momentum($<$30 kpc), measured in terms of the halo spin parameter, on the secular evolution of the bar using N-body simulations. We have varied the halo spin parameter $λ$ from 0 to 0.1 for co-rotating (prograde) spinning halos and one counter-rotating (retrograde) halo spin ($λ$=-0.1) with respect to the disk. We report that as the halo spin increases, the buckling is also triggered earlier and is followed by a second buckling phase in high-spin halo models. The timescale for the second buckling is significantly longer than the first buckling. We find that bar strength does not reduce significantly after the buckling in all of our models, which provides new insights about the role of inner halo angular momentum, unlike previous studies. Also, the buckled bar can still transfer significant angular momentum to the halo in the secular evolution phase, but it reduces with increasing halo spin. In the secular evolution phase, the bar strength increases and saturates to nearly equal values for all the models irrespective of halo spin and the sense of rotation with respect to the disk. The final boxy/peanut shape is more pronounced ($\sim$20 $\%$) in high spin halos having higher angular momentum in the inner region compared to non-rotating halos. We explain our results with angular momentum exchanges between the disk and halo.