论文标题

从自然语言规格中自动提取UML类图

Towards Automatically Extracting UML Class Diagrams from Natural Language Specifications

论文作者

Yang, Song, Sahraoui, Houari

论文摘要

在模型驱动的工程(MDE)中,UML类图是开发人员之间计划和交流的一种方式。但是,它是复杂且资源消费的。我们提出了一种从自然语言软件规格中提取UML类图的自动化方法。为了开发我们的方法,我们在志愿者的帮助下创建了UML类图的数据集及其英语规格。我们的方法是一个步骤的管道,该步骤包括将输入分割为句子,句子的分类,句子的UML类图片段的产生以及这些片段组成成一个UML类图。我们开发了特定于UML类图提取的定量测试框架。我们的方法产生了较低的精度和回忆,但是未来研究的基准。

In model-driven engineering (MDE), UML class diagrams serve as a way to plan and communicate between developers. However, it is complex and resource-consuming. We propose an automated approach for the extraction of UML class diagrams from natural language software specifications. To develop our approach, we create a dataset of UML class diagrams and their English specifications with the help of volunteers. Our approach is a pipeline of steps consisting of the segmentation of the input into sentences, the classification of the sentences, the generation of UML class diagram fragments from sentences, and the composition of these fragments into one UML class diagram. We develop a quantitative testing framework specific to UML class diagram extraction. Our approach yields low precision and recall but serves as a benchmark for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源