论文标题
两层粘性液膜中的非线性周期性和孤立滚动波
Nonlinear periodic and solitary rolling waves in falling two-layer viscous liquid films
论文作者
论文摘要
我们研究了非零雷诺数的降落的两层液体膜中的非线性周期性和孤立的二维滚动波。在任何流速下,就液态空气表面和液态液界面的长波变形而言,已知落下的两层液体膜是线性不稳定的。两种不同类型的零振幅中性稳定波在下游传播而不生长或收缩:锯齿形的表面模式和变薄的静脉曲张界面模式。使用Navier-Stokes方程的边界层降低,我们研究了非线性周期性流动波的发作,可能的分叉和相互作用。通过延续为固定周期溶液在共同移动的参考框架中从中性稳定的中性稳定波开始,从而获得周期性波。我们发现当周期性解决方案接近同型环路时出现的各种孤立波。使用边界层模型的直接数值模拟研究了波浪相互作用。我们透露,在时间进化的早期阶段,粗糙的碰撞和以不同速度传播的波浪的合并来控制。最终,当海浪达到最大的可接受振幅时,粗糙被捕。分叉分析证实了可能孤立波幅度的上限存在,从而解释了灌木丛的停滞。在混合制度中,当两种模式类型都不稳定时,由于更快的旅行曲折模式与较慢的旅行静脉曲张模式之间的竞争,时间动力学变得高度不规则。发现了典型的两层动力学状态,对应于第二层破裂。在这个r中
We investigate nonlinear periodic and solitary two-dimensional rolling waves in a falling two-layer liquid film in the regime of non-zero Reynolds numbers. At any flow rate, a falling two-layer liquid film is known to be linearly unstable with respect to long-wave deformations of the liquid-air surface and liquid-liquid interface. Two different types of zero-amplitude neutrally stable waves propagate downstream without growing or shrinking: a zig-zag surface mode and a thinning varicose interface mode. Using a boundary-layer reduction of the Navier-Stokes equation, we investigate the onset, possible bifurcations and interactions of nonlinear periodic travelling waves. Periodic waves are obtained by continuation as stationary periodic solutions in the co-moving reference frame starting from small-amplitude neutrally stable waves. We find a variety of solitary waves that appear when a periodic solution approaches a homoclinic loop. Wave interactions are studied using direct numerical simulations of the boundary-layer model. We reveal that in the early stages of temporal evolution coarsening is dominated by an inelastic collision and merging of waves that travel at different speeds. Eventually, coarsening becomes arrested when the waves have reached the largest admissible amplitude. Bifurcation analysis confirms the existence of an upper bound of possible solitary wave amplitudes, thus explaining the arrest of coarsening. In the mixed regime, when both mode types are unstable, the temporal dynamics becomes highly irregular due to the competition between a faster-travelling zig-zag mode and a slower-travelling varicose mode. A quintessentially two-layer dynamical regime is found, which corresponds to a ruptured second layer. In this r