论文标题
InterSIM:通过显式关系建模的交互式流量模拟
InterSim: Interactive Traffic Simulation via Explicit Relation Modeling
论文作者
论文摘要
与现实世界的道路测试相比,通过以更可扩展和安全的方式为计划人员启用测试,交互式流量模拟对自动驾驶系统至关重要。现有方法从大规模驾驶数据中学习代理模型以模拟现实的交通情况,但是在拥挤的场景中产生一致和多样化的多代理互动行为仍然是一个悬而未决的问题。在这项工作中,我们提出了Intersim,这是一种用于测试自动驾驶计划者的交互式流量模拟器。鉴于来自自我代理的测试计划轨迹,有关场景中代理之间相互作用关系的相互作用的原因,并为与关系一致的每个环境代理生成了现实的轨迹。我们在大规模交互式驾驶数据集上训练和验证模型。实验结果表明,与基于最新的学习交通模拟器相比,InterSIM在两个模拟任务中实现了更好的模拟现实主义和反应性。
Interactive traffic simulation is crucial to autonomous driving systems by enabling testing for planners in a more scalable and safe way compared to real-world road testing. Existing approaches learn an agent model from large-scale driving data to simulate realistic traffic scenarios, yet it remains an open question to produce consistent and diverse multi-agent interactive behaviors in crowded scenes. In this work, we present InterSim, an interactive traffic simulator for testing autonomous driving planners. Given a test plan trajectory from the ego agent, InterSim reasons about the interaction relations between the agents in the scene and generates realistic trajectories for each environment agent that are consistent with the relations. We train and validate our model on a large-scale interactive driving dataset. Experiment results show that InterSim achieves better simulation realism and reactivity in two simulation tasks compared to a state-of-the-art learning-based traffic simulator.