论文标题

通过进化规则学习的联合模糊神经网络

Federated Fuzzy Neural Network with Evolutionary Rule Learning

论文作者

Zhang, Leijie, Shi, Ye, Chang, Yu-Cheng, Lin, Chin-Teng

论文摘要

分布式模糊神经网络(DFNN)由于在分布式方案中处理数据不确定性方面的学习能力,最近引起了人们的关注。但是,DFNN的处理局部数据是非独立且分布相同(非IID)的案例,这是一个挑战。在本文中,我们提出了一个具有进化规则学习(ERL)的联合模糊神经网络(FEDFN​​N),以应对非IID问题以及数据不确定性。 FedFNN在服务器中维护一套全局规则,并为每个本地客户端的这些规则的个性化子集维护。 ERL受到生物进化理论的启发。它鼓励规则变化,同时激活卓越规则并为没有IID数据的本地客户停用劣等规则。具体而言,ERL由迭代过程中的两个阶段组成:一个规则合作阶段,该阶段通过基于其激活状态汇总本地规则和一个规则演化阶段来更新全局规则,该规则演变阶段会进化全局规则并更新本地规则的激活状态。此过程改善了FedFNN的概括和个性化处理,以处理非IID问题和数据不确定性。在一系列数据集上进行的广泛实验证明了FedFNN优于最先进的方法。

Distributed fuzzy neural networks (DFNNs) have attracted increasing attention recently due to their learning abilities in handling data uncertainties in distributed scenarios. However, it is challenging for DFNNs to handle cases in which the local data are non-independent and identically distributed (non-IID). In this paper, we propose a federated fuzzy neural network (FedFNN) with evolutionary rule learning (ERL) to cope with non-IID issues as well as data uncertainties. The FedFNN maintains a global set of rules in a server and a personalized subset of these rules for each local client. ERL is inspired by the theory of biological evolution; it encourages rule variations while activating superior rules and deactivating inferior rules for local clients with non-IID data. Specifically, ERL consists of two stages in an iterative procedure: a rule cooperation stage that updates global rules by aggregating local rules based on their activation statuses and a rule evolution stage that evolves the global rules and updates the activation statuses of the local rules. This procedure improves both the generalization and personalization of the FedFNN for dealing with non-IID issues and data uncertainties. Extensive experiments conducted on a range of datasets demonstrate the superiority of the FedFNN over state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源