论文标题

较高的同型Cuntz类

Higher homotopy groups of Cuntz classes

论文作者

Toms, Andrew S.

论文摘要

令$ a $为一个Unital简单可分开的精确c $^*$ - 代数,大约可以分开并且实际等级为零。我们证明,$ a $中的一组正元素与固定的非压缩Cuntz类具有消失的同型组。结合S. Zhang的工作,对于紧凑元素的情况,这给出了这些代数的Cuntz类的同型组的完整计算。涵盖的例子包括大约有限维(AF)代数和非公共托里。

Let $A$ be a unital simple separable exact C$^*$-algebra which is approximately divisible and of real rank zero. We prove that the set of positive elements in $A$ with a fixed non-compact Cuntz class has vanishing homotopy groups. Combined with work of S. Zhang for the case of compact elements, this gives a complete calculation of the homotopy groups of Cuntz classes for these algebras. Examples covered include approximately finite-dimensional (AF) algebras and irrational noncommutative tori.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源