论文标题
具有可扩展光子调制器
High-fidelity trapped-ion qubit operations with scalable photonic modulators
论文作者
论文摘要
用被困离子和中性原子进行的实验通常采用光调节剂,以控制针对单个原子的光的相,频率和振幅。这些元素昂贵,笨重,消耗了大量功能,并且通常依靠自由空间I/O频道,所有这些频道都带来了缩放挑战。为了支持多个离子系统,例如被困的离子量子计算机或时钟和传感器(例如时钟和传感器)的微型可部署设备,这些元素必须最终被微观制动,理想地单层与陷阱,以避免在物理独立组件之间与光耦合相关的损失。在这项工作中,我们设计,制造和测试能够与表面电极离子陷阱进行整体整合的光学调制器。这些设备由配置为多阶段的Mach-Zehnder调制器配置的压电 - 原始光子集成电路组成,这些电路用于控制在单独的芯片上传递到单个捕获离子的光强度。我们使用使用数百个多门序列的量子断层扫描来增强忠诚度对与量子计算相关的门误差的类型和大小的敏感性,并更好地表征调制器的性能,最终测量超过99.7%的单个Qubit Gate Fidelities。
Experiments with trapped ions and neutral atoms typically employ optical modulators in order to control the phase, frequency, and amplitude of light directed to individual atoms. These elements are expensive, bulky, consume substantial power, and often rely on free-space I/O channels, all of which pose scaling challenges. To support many-ion systems like trapped-ion quantum computers or miniaturized deployable devices like clocks and sensors, these elements must ultimately be microfabricated, ideally monolithically with the trap to avoid losses associated with optical coupling between physically separate components. In this work we design, fabricate, and test an optical modulator capable of monolithic integration with a surface-electrode ion trap. These devices consist of piezo-optomechanical photonic integrated circuits configured as multi-stage Mach-Zehnder modulators that are used to control the intensity of light delivered to a single trapped ion on a separate chip. We use quantum tomography employing hundreds of multi-gate sequences to enhance the sensitivity of the fidelity to the types and magnitudes of gate errors relevant to quantum computing and better characterize the performance of the modulators, ultimately measuring single qubit gate fidelities that exceed 99.7%.