论文标题
微型腔声音 - 连贯的光学到微波界面
Microcavity phonoritons -- a coherent optical-to-microwave interface
论文作者
论文摘要
光力学系统为(量子)网络中的双向光学到微波互转提供了途径。我们证明了该功能的实现和非绝热的光学机械控制,以在结构化的半导体微腔内的单个,$ $ M尺寸的电势陷阱和激子 - 波利顿冷凝物中的单个左右陷阱中实现。激子增强的光力耦合会导致自我振荡(声子激光) - 从而证明可逆光子转换为响应。我们表明,这些振荡是光力强耦合信号的签名,使难以捉摸的声子 - exciton-photon准颗粒的出现-Phonoritons。然后,我们使用电气产生的GHz振动和谐振光学激光束对声音光谱以及相干微波到光子互换进行了完全控制。这些发现将零维偏振子凝结成为微波和光学结构域之间的可扩展相干界面,并具有增强的微波至机械和机械到光学耦合速率。
Optomechanical systems provide a pathway for the bidirectional optical-to-microwave interconversion in (quantum) networks. We demonstrate the implementation of this functionality and non-adiabatic optomechanical control in a single, $μ$m-sized potential trap for phonons and exciton-polariton condensates in a structured semiconductor microcavity. The exciton-enhanced optomechanical coupling leads to self-oscillations (phonon lasing) -- thus proving reversible photon-to-phonon conversion. We show that these oscillations are a signature of the optomechanical strong coupling signalizing the emergence of elusive phonon-exciton-photon quasiparticles -- the phonoritons. We then demonstrate full control of the phonoriton spectrum as well as coherent microwave-to-photon interconversion using electrically generated GHz-vibrations and a resonant optical laser beam. These findings establish the zero-dimensional polariton condensates as a scalable coherent interface between microwave and optical domains with enhanced microwave-to-mechanical and mechanical-to-optical coupling rates.