论文标题

交换耦合纳米磁体中的拓扑相变和浆果式滞后

Topological phase transitions and Berry-phase hysteresis in exchange-coupled nanomagnets

论文作者

Ullah, Ahsan, Li, Xin, Jin, Yunlong, Pahari, Rabindra, Yue, Lanping, Xu, Xiaoshan, Balasubramanian, Balamurugan, Sellmyer, David J., Skomski, Ralph

论文摘要

磁性材料中的拓扑相对于称为拓扑厅效应的霍尔效应产生了量化的贡献,该效应通常是由天空造成的,每个天空都会产生磁通量量子H/e。对纳米结构材料中拓扑特性的控制和理解是基本科学和技术应用的极大兴趣的主题,尤其是在Spintronics中。在这项工作中,通过实验和理论上研究了平均粒径为13.7 nm的Exchange耦合钴纳米颗粒的电子传输特性和自旋结构。磁性和霍尔效应测量值确定了交换耦合的钴纳米颗粒中的拓扑相变,并被用于在拓扑厅效应中发现一种质量上新型的磁滞,即浆果相 - 相滞后。微磁模拟揭示了拓扑厅效应的起源,即手性结构域,域壁的手性通过整数天空数量量化。这些自旋结构与B20晶体和多层薄膜中的Dzyaloshinskii Moriya相互作用而形成的天际结构不同,并且是由交换耦合的钴纳米颗粒中的合作磁化反转引起的。开发了一个分析模型来解释浆果 - 相滞后的潜在物理学,该物理学与标志性的磁性滞后截然不同,并且构成了21世纪对我们在物理,化学,数学和材料科学界限的自然观点的重塑的一个方面。

Topological phase in magnetic materials yields a quantized contribution to the Hall effect known as the topological Hall effect, which is often caused by skyrmions, with each skyrmion creating a magnetic flux quantum h/e. The control and understanding of topological properties in nanostructured materials is the subject of immense interest for both fundamental science and technological applications, especially in spintronics. In this work, the electron-transport properties and spin structure of exchange-coupled cobalt nanoparticles with an average particle size of 13.7 nm are studied experimentally and theoretically. Magnetic and Hall-effect measurements identify topological phase transitions in the exchange-coupled cobalt nanoparticles and were used to discover a qualitatively new type of hysteresis in the topological Hall effect namely, Berry-phase hysteresis. Micromagnetic simulations reveal the origin of the topological Hall effect namely, the chiral domains, with domain-wall chirality quantified by an integer skyrmion number. These spin structures are different from the skyrmions formed due to Dzyaloshinskii Moriya interactions in B20 crystals and multilayered thin films, and caused by cooperative magnetization reversal in the exchange-coupled cobalt nanoparticles. An analytical model is developed to explain the underlying physics of Berry-phase hysteresis, which is strikingly different from the iconic magnetic hysteresis and constitutes one aspect of 21st-century reshaping of our view on nature at the borderline of physics, chemistry, mathematics, and materials science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源