论文标题

Caloflow for for calochallenge数据集1

CaloFlow for CaloChallenge Dataset 1

论文作者

Krause, Claudius, Pang, Ian, Shih, David

论文摘要

Caloflow是一种基于归一化流量的快速量热模拟的新方法。将Caloflow应用于快速热量计仿真挑战2022的数据集1的光子和带电的Pion Geant4淋浴时,我们显示了如何以比Geant4快几个数量级的抽样时间生成高效率样品。我们使用量热计的淋浴图像,高级特征的直方图以及诸如经过训练的分类器训练,以区分Caloflow和Geant4样品的分类器,证明了样品的保真度。

CaloFlow is a new and promising approach to fast calorimeter simulation based on normalizing flows. Applying CaloFlow to the photon and charged pion Geant4 showers of Dataset 1 of the Fast Calorimeter Simulation Challenge 2022, we show how it can produce high-fidelity samples with a sampling time that is several orders of magnitude faster than Geant4. We demonstrate the fidelity of the samples using calorimeter shower images, histograms of high-level features, and aggregate metrics such as a classifier trained to distinguish CaloFlow from Geant4 samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源