论文标题
通过机器学习模型从稳定的片段重新组装的超强MOF的数据库
A Database of Ultrastable MOFs Reassembled from Stable Fragments with Machine Learning Models
论文作者
论文摘要
对金属有机框架(MOF)的大型假设数据库的高通量筛选可以发现新材料,但是它们在实际应用中的稳定性通常是未知的。我们利用社区知识和机器学习(ML)模型来识别激活后热稳定且稳定的MOF。我们将这些MOF分离为它们的构建块,并重组它们,以制作一个新的假设MOF数据库,该数据库的超过50,000个结构,这些结构比以前的数据库相比,将连接网和无机构件的数量级要多。该数据库显示了超高的MOF结构的数量级富集,这些结构在激活后稳定,并且比平均实验表征的MOF更热稳定一个以上的标准偏差。对于近10,000个超强的MOF,我们计算散装弹性模量以确认这些材料具有良好的机械稳定性,并且我们报告了甲烷可交付能力。我们的工作确定了超强MOF中的特权金属节点,可同时优化气体存储和机械稳定性。
High-throughput screening of large hypothetical databases of metal-organic frameworks (MOFs) can uncover new materials, but their stability in real-world applications is often unknown. We leverage community knowledge and machine learning (ML) models to identify MOFs that are thermally stable and stable upon activation. We separate these MOFs into their building blocks and recombine them to make a new hypothetical MOF database of over 50,000 structures that samples orders of magnitude more connectivity nets and inorganic building blocks than prior databases. This database shows an order of magnitude enrichment of ultrastable MOF structures that are stable upon activation and more than one standard deviation more thermally stable than the average experimentally characterized MOF. For the nearly 10,000 ultrastable MOFs, we compute bulk elastic moduli to confirm these materials have good mechanical stability, and we report methane deliverable capacities. Our work identifies privileged metal nodes in ultrastable MOFs that optimize gas storage and mechanical stability simultaneously.