论文标题
具有多层感知器的点云的同构网状生成
Isomorphic mesh generation from point clouds with multilayer perceptrons
论文作者
论文摘要
我们提出了一个新的神经网络,称为同构网状发电机(IMG),该网络从包含噪声和缺失零件的点云中生成同构网状。任意对象的同构网格具有统一的网格结构,即使对象属于不同类别。该统一表示使表面模型可以由DNN处理。此外,同构网格的统一网格结构使相同的过程适用于所有同构网格。尽管在一般网格模型的情况下,我们需要根据其网格结构来考虑这些过程。因此,与一般网格模型相比,同构网格的使用会导致有效的内存使用和计算时间。由于IMG是一种无数据的方法,因此准备任何点云作为事先进行训练数据是不必要的,除了将目标对象的点云用作IMG的输入数据。此外,IMG通过将参考网格映射到给定的输入点云中获得的同构网格。为了稳定地估算映射功能,我们引入了分步映射策略。该策略在保持参考网格的结构的同时达到了灵活的变形。从使用手机的仿真和实验,我们确认IMG即使输入点云包括噪声和丢失的零件,IMG也可以可靠地生成给定对象的同构网眼。
We propose a new neural network, called isomorphic mesh generator (iMG), which generates isomorphic meshes from point clouds containing noise and missing parts. Isomorphic meshes of arbitrary objects have a unified mesh structure even though the objects belong to different classes. This unified representation enables surface models to be handled by DNNs. Moreover, the unified mesh structure of isomorphic meshes enables the same process to be applied to all isomorphic meshes; although in the case of general mesh models, we need to consider the processes depending on their mesh structures. Therefore, the use of isomorphic meshes leads to efficient memory usage and calculation time compared with general mesh models. As iMG is a data-free method, preparing any point clouds as training data in advance is unnecessary, except a point cloud of the target object used as the input data of iMG. Additionally, iMG outputs an isomorphic mesh obtained by mapping a reference mesh to a given input point cloud. To estimate the mapping function stably, we introduce a step-by-step mapping strategy. This strategy achieves a flexible deformation while maintaining the structure of the reference mesh. From simulation and experiments using a mobile phone, we confirmed that iMG can generate isomorphic meshes of given objects reliably even when the input point cloud includes noise and missing parts.