论文标题

地震网:半无限域中的地震波建模的物理信息网络

SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain

论文作者

Ren, Pu, Rao, Chengping, Chen, Su, Wang, Jian-Xun, Sun, Hao, Liu, Yang

论文摘要

在整合物理知识和机器学习以建模动态系统方面,人们一直在越来越兴趣。但是,已经对地震波建模任务进行了非常有限的研究。一个关键的挑战是,这些地球物理问题通常是在大型领域(即半无限)中定义的,这会导致高计算成本。在本文中,我们提出了一个新型的物理信息神经网络(PINN)模型,用于在没有标记数据的NEDD的半无限域中进行地震波建模。在特定的情况下,吸收边界条件被引入网络中,作为用于处理截短边界的软正规化程序。在计算效率方面,我们考虑了通过时间域分解的顺序训练策略,以提高网络的可扩展性和解决方案准确性。此外,我们为参数载荷设计了一种新型的替代建模策略,鉴于在不同位置的地震载荷,semin-Infinite结构域中的波传播。已经实施了各种数值实验,以评估在地震波传播的正向建模的背景下提出的PINN模型的性能。特别是,我们定义了不同的材料分布来测试这种方法的多功能性。结果在独特的情况下表明了出色的解决方案精度。

There has been an increasing interest in integrating physics knowledge and machine learning for modeling dynamical systems. However, very limited studies have been conducted on seismic wave modeling tasks. A critical challenge is that these geophysical problems are typically defined in large domains (i.e., semi-infinite), which leads to high computational cost. In this paper, we present a novel physics-informed neural network (PINN) model for seismic wave modeling in semi-infinite domain without the nedd of labeled data. In specific, the absorbing boundary condition is introduced into the network as a soft regularizer for handling truncated boundaries. In terms of computational efficiency, we consider a sequential training strategy via temporal domain decomposition to improve the scalability of the network and solution accuracy. Moreover, we design a novel surrogate modeling strategy for parametric loading, which estimates the wave propagation in semin-infinite domain given the seismic loading at different locations. Various numerical experiments have been implemented to evaluate the performance of the proposed PINN model in the context of forward modeling of seismic wave propagation. In particular, we define diverse material distributions to test the versatility of this approach. The results demonstrate excellent solution accuracy under distinctive scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源