论文标题

增强声音的模糊分解为罪恶,瞬态和噪音

Enhanced Fuzzy Decomposition of Sound Into Sines, Transients, and Noise

论文作者

Fierro, Leonardo, Välimäki, Vesa

论文摘要

声音分解为罪恶,瞬态和噪声是音频处理中的长期研究问题。该三向分离的当前解检测光谱图中的水平和垂直结构或各向异性和方向,以识别每个光谱箱的性质并将其分类为正弦,瞬态或噪声。本文提出了一种基于模糊逻辑的增强的三向分解方法,在保留完美的重建属性的同时,可以使软掩蔽。所提出的方法允许每个光谱箱同时属于两个类别,即正弦,噪声或瞬态和噪声。报告了针对其他三种技术的主观听力测试的结果,表明所提出的分解产生了更好或可比的质量。主要的改进出现在瞬态分离中,该分离几乎没有或根本没有其他组件的能量或泄漏损失,并且在表现强瞬变的测试信号方面表现良好。分离的音频质量显示取决于所有测试方法的输入信号的复杂性。提出的方法有助于提高各种音频处理应用程序的质量。报告了对最先进的时间尺度修改方法的成功实现。

The decomposition of sounds into sines, transients, and noise is a long-standing research problem in audio processing. The current solutions for this three-way separation detect either horizontal and vertical structures or anisotropy and orientations in the spectrogram to identify the properties of each spectral bin and classify it as sinusoidal, transient, or noise. This paper proposes an enhanced three-way decomposition method based on fuzzy logic, enabling soft masking while preserving the perfect reconstruction property. The proposed method allows each spectral bin to simultaneously belong to two classes, sine and noise or transient and noise. Results of a subjective listening test against three other techniques are reported, showing that the proposed decomposition yields a better or comparable quality. The main improvement appears in transient separation, which enjoys little or no loss of energy or leakage from the other components and performs well for test signals presenting strong transients. The audio quality of the separation is shown to depend on the complexity of the input signal for all tested methods. The proposed method helps improve the quality of various audio processing applications. A successful implementation over a state-of-the-art time-scale modification method is reported as an example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源