论文标题
liouville type定理大约$ p $ -Harmonic 1表格,$ P $ - Harmonic Map and Harmonic $ Q $ form
Liouville Type Theorem about $p$-harmonic 1 form, $p$-harmonic map and harmonic $ q $ form
论文作者
论文摘要
在本文中,我们将使用归一化的插曲RICCI曲率研究Riemannian歧管上$ P $谐波功能的Liouville类型属性。其次,我们将使用$ p $谐波功能或$ p $谐波1表格的Altian liuville定理的《雅典曲率》。最后,我们将使用oberian liouville定理forharmonic $ q(q \ geq 2)$ for的《雅典曲率》。
In this paper, we will use the normalized intetral Ricci curvature to investigate Liouville type property of $ p $ harmonic function on Riemannian manifold. secondly, we will use the BiRic curvature to obtian Liuville theorem for $ p $ harmonic function or $ p $ harmonic 1 form. Lastly, we we will use the BiRic curvature to obtian Liouville theorem forharmonic $ q(q\geq 2)$ form.