论文标题

拉姆齐数量的大量偶数周期和粉丝

Ramsey numbers of large even cycles and fans

论文作者

You, Chunlin, Lin, Qizhong

论文摘要

对于Graphs $ f $和$ h $,Ramsey Number $ r(f,h)$是最小的正整数$ n $,因此任何红色/蓝色边缘颜色的$ k_n $都包含红色$ f $或蓝色$ h $。令$ c_n $为长度$ n $,$ f_n $的周期为粉丝,由$ n $三角形组成,所有这些都共享一个共同的顶点。在本文中,我们证明,对于所有足够大的$ n $,\ [r(c_ {2 \ lfloor an \ rfloor},f_n)= \ left \ {\ oken {arnay} {array} {ll} {ll} {ll}(2+2a+o(2+2a+o(1))n&\ textrm (4a+o(1))N&\ textrm {如果$ a \ geq 1 $。} \ end {array} \ right。 \]

For graphs $F$ and $H$, the Ramsey number $R(F, H)$ is the smallest positive integer $N$ such that any red/blue edge coloring of $K_N$ contains either a red $F$ or a blue $H$. Let $C_n$ be a cycle of length $n$ and $F_n$ be a fan consisting of $n$ triangles all sharing a common vertex. In this paper, we prove that for all sufficiently large $n$, \[ R(C_{2\lfloor an\rfloor}, F_n)= \left\{ \begin{array}{ll} (2+2a+o(1))n & \textrm{if $1/2\leq a< 1$,}\\ (4a+o(1))n & \textrm{if $ a\geq 1$.} \end{array} \right. \]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源