论文标题
SPHNET:用于语义点云进行分割的球形网络
SphNet: A Spherical Network for Semantic Pointcloud Segmentation
论文作者
论文摘要
机器人系统的语义细分可以实现广泛的应用,从自动驾驶汽车和增强现实系统到国内机器人。我们认为,球形代表是自然的以自然的形式。因此,在这项工作中,我们提出了一个新颖的框架,利用了Lidar Pointclouds的这种表示,以实现语义分割的任务。我们的方法基于球形卷积神经网络,该网络可以无缝处理来自各种传感器系统(例如不同的LiDAR系统)的观察结果,并提供了对环境的准确分割。我们在两个不同的阶段进行操作:首先,我们将投影输入点云编码为球形特征。其次,我们对球形特征进行解码和反向项目,以实现对角云的准确语义分割。我们使用众所周知的公共数据集评估了基于最新投影的语义细分方法的方法。我们证明,球形表示使我们能够提供更准确的分割,并且比在训练过程中所看到的,对具有不同视野和光束数量的传感器具有更好的概括。
Semantic segmentation for robotic systems can enable a wide range of applications, from self-driving cars and augmented reality systems to domestic robots. We argue that a spherical representation is a natural one for egocentric pointclouds. Thus, in this work, we present a novel framework exploiting such a representation of LiDAR pointclouds for the task of semantic segmentation. Our approach is based on a spherical convolutional neural network that can seamlessly handle observations from various sensor systems (e.g., different LiDAR systems) and provides an accurate segmentation of the environment. We operate in two distinct stages: First, we encode the projected input pointclouds to spherical features. Second, we decode and back-project the spherical features to achieve an accurate semantic segmentation of the pointcloud. We evaluate our method with respect to state-of-the-art projection-based semantic segmentation approaches using well-known public datasets. We demonstrate that the spherical representation enables us to provide more accurate segmentation and to have a better generalization to sensors with different field-of-view and number of beams than what was seen during training.