论文标题

在分类环境中的爱因斯坦代数

Einstein Algebras in a Categorical Context

论文作者

Pysiak, Leszek, Sasin, Wiesław, Heller, Michael, Miller, Tomasz

论文摘要

根据类别理论的基本思想,从基本上是对一般相对性的代数表述,任何爱因斯坦代数都可以从平滑代数类别的任何对象的角度来考虑。然后将这样的对象称为阶段。如果我们从阶段的角度考虑给定的爱因斯坦代数,我们选择成为“无限量的代数”(Weil代数)(Weil代数),那么我们可以假设它渗透到量子的量子上,量子重力可能起作用。我们采用了vinogradov的几何概念(适应这种情况),并表明相应的代数是几何的,但是从宏观级别则无法观察到无限水平。但是,如果给定代数不交流,情况可能会改变。当我们采用许多其他平滑代数时,就会发生类似的情况,例如阶段,而不是脉络代数,例如那些描述空间的代数,其中具有普通点的共有依次的“参数化点”,例如封闭曲线(循环)。我们还讨论了将爱因斯坦代数纳入类别理论的概念环境的其他后果。

According to the basic idea of category theory, any Einstein algebra, essentially an algebraic formulation of general relativity, can be considered from the point of view of any object of the category of smooth algebras; such an object is then called a stage. If we contemplate a given Einstein algebra from the point of view of the stage, which we choose to be an "algebra with infinitesimals" (Weil algebra), then we can suppose it penetrates a submicroscopic level, on which quantum gravity might function. We apply Vinogradov's notion of geometricity (adapted to this situation), and show that the corresponding algebra is geometric, but then the infinitesimal level is unobservable from the macro-level. However, the situation can change if a given algebra is noncommutative. An analogous situation occurs when as stages, instead of Weil algebras, we take many other smooth algebras, for example those that describe spaces in which with ordinary points coexsist "parametrized points", for example closed curves (loops). We also discuss some other consequences of putting Einstein algebras into the conceptual environment of category theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源