论文标题

临床灵感的多代理变压器用于从多模式数据的疾病轨迹预测

Clinically-Inspired Multi-Agent Transformers for Disease Trajectory Forecasting from Multimodal Data

论文作者

Nguyen, Huy Hoang, Blaschko, Matthew B., Saarakkala, Simo, Tiulpin, Aleksei

论文摘要

深度神经网络通常应用于医学图像以自动化医学诊断问题。但是,从业人员通常面临的一个更临床相关的问题是如何预测疾病的未来轨迹。当前的预后或疾病轨迹预测的方法通常需要领域知识,并且适用。在本文中,我们将预后预测问题作为一对一的预测问题。受到两个代理商(放射科医生和全科医生)的临床决策过程的启发,我们预测了两个基于变压器的组件的预后,它们相互共享信息。该框架中的第一个变压器旨在分析成像数据,第二个变压器将其内部状态作为输入利用,也将其与辅助临床数据融合在一起。该问题的时间性质是在变压器状态中建立的,使我们能够将预测问题视为多任务分类,我们提出了新的损失。我们展示了方法在预测结构性膝关节骨关节炎变化和预测阿尔茨海默氏病临床状态的有效性直接从原始的多模式数据中。所提出的方法在性能和校准方面优于多个最先进的基线,而实际应用程序都是所需的。我们的方法的开源实现可在\ url {https://github.com/oulu-imeds/climatv2}上公开获得。

Deep neural networks are often applied to medical images to automate the problem of medical diagnosis. However, a more clinically relevant question that practitioners usually face is how to predict the future trajectory of a disease. Current methods for prognosis or disease trajectory forecasting often require domain knowledge and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many prediction problem. Inspired by a clinical decision-making process with two agents -- a radiologist and a general practitioner -- we predict prognosis with two transformer-based components that share information with each other. The first transformer in this framework aims to analyze the imaging data, and the second one leverages its internal states as inputs, also fusing them with auxiliary clinical data. The temporal nature of the problem is modeled within the transformer states, allowing us to treat the forecasting problem as a multi-task classification, for which we propose a novel loss. We show the effectiveness of our approach in predicting the development of structural knee osteoarthritis changes and forecasting Alzheimer's disease clinical status directly from raw multi-modal data. The proposed method outperforms multiple state-of-the-art baselines with respect to performance and calibration, both of which are needed for real-world applications. An open-source implementation of our method is made publicly available at \url{https://github.com/Oulu-IMEDS/CLIMATv2}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源