论文标题

使用生成先验的稳定的深MRI重建

Stable Deep MRI Reconstruction using Generative Priors

论文作者

Zach, Martin, Knoll, Florian, Pock, Thomas

论文摘要

数据驱动的方法最近在磁共振成像(MRI)重建方面取得了巨大的成功,但是由于缺乏普遍性和可解释性,整合到临床常规中仍然具有挑战性。在本文中,我们在基于生成图像先验的统一框架中解决了这些挑战。我们提出了一种新型的基于神经网络的新型正规器,该正常化程序仅在引用幅度图像上在生成环境中进行训练。训练后,常规器编码更高级别的域统计信息,我们通过合成没有数据的图像来证明这些统计信息。在经典变异方法中嵌入训练的模型可产生高质量的重建,而与子采样模式无关。此外,当以对比度变化的形式面对分布数据时,该模型显示出稳定的行为。此外,概率解释提供了重建的分布,因此可以进行不确定性定量。为了重建并行MRI,我们提出了一种快速算法,以共同估计图像和灵敏度图。结果表明,与最新的端到端深度学习方法相提并论,同时保留了相对于子采样模式的灵活性并允许不确定性量化。

Data-driven approaches recently achieved remarkable success in magnetic resonance imaging (MRI) reconstruction, but integration into clinical routine remains challenging due to a lack of generalizability and interpretability. In this paper, we address these challenges in a unified framework based on generative image priors. We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only. After training, the regularizer encodes higher-level domain statistics which we demonstrate by synthesizing images without data. Embedding the trained model in a classical variational approach yields high-quality reconstructions irrespective of the sub-sampling pattern. In addition, the model shows stable behavior when confronted with out-of-distribution data in the form of contrast variation. Furthermore, a probabilistic interpretation provides a distribution of reconstructions and hence allows uncertainty quantification. To reconstruct parallel MRI, we propose a fast algorithm to jointly estimate the image and the sensitivity maps. The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods, while preserving the flexibility with respect to sub-sampling patterns and allowing for uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源