论文标题

通过dbmark深度增强基于DNN的图像水印的鲁棒性

Deep Boosting Robustness of DNN-based Image Watermarking via DBMark

论文作者

Ye, Guanhui, Gao, Jiashi, Xie, Wei, Yin, Bo, Wei, Xuetao

论文摘要

图像水印是一种将信息隐藏到可以承受扭曲的图像中的技术,同时要求编码的图像在感知上与原始图像相同。基于深度神经网络(DNN)的最新工作在数字水印方面取得了令人印象深刻的发展。在各种扭曲下,更高的鲁棒性是对数字图像水印方法的永恒追求。在本文中,我们提出了DBMark,这是一种新型的端到端数字图像水印框架,以深层提高基于DNN的图像水印的稳健性。主要的新颖性是可逆神经网络(INN)的协同作用和有效的水印特征。该框架通过有效的基于神经网络的消息处理器生成具有冗余和误差校正能力的水印功能,并与Inn的强大信息嵌入和提取能力协同作用,以实现更高的鲁棒性和隐形性。神经网络的强大学习能力使消息处理器能够适应各种扭曲。此外,我们建议将水印信息嵌入离散小波变换(DWT)域和设计低低(LL)子兰的损失中,以增强隐形性。广泛的实验结果表明,与最先进的框架相比,在各种扭曲(例如辍学,作物,作物,高斯过滤器和JPEG压缩)下,所提出的框架的优势。

Image watermarking is a technique for hiding information into images that can withstand distortions while requiring the encoded image to be perceptually identical to the original image. Recent work based on deep neural networks (DNN) has achieved impressive progression in digital watermarking. Higher robustness under various distortions is the eternal pursuit of digital image watermarking approaches. In this paper, we propose DBMARK, a novel end-to-end digital image watermarking framework to deep boost the robustness of DNN-based image watermarking. The key novelty is the synergy of invertible neural networks (INN) and effective watermark features generation. The framework generates watermark features with redundancy and error correction ability through the effective neural network based message processor, synergized with the powerful information embedding and extraction abilities of INN to achieve higher robustness and invisibility. The powerful learning ability of neural networks enables the message processor to adapt to various distortions. In addition, we propose to embed the watermark information in the discrete wavelet transform (DWT) domain and design low-low (LL) sub-band loss to enhance invisibility. Extensive experiment results demonstrate the superiority of the proposed framework compared with the state-of-the-art ones under various distortions such as dropout, cropout, crop, Gaussian filter, and JPEG compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源