论文标题
自适应调制的符号级预码和检测的端到端学习
End-to-End Learning for Symbol-Level Precoding and Detection with Adaptive Modulation
论文作者
论文摘要
常规的符号级预码(SLP)设计在接收器上假设固定的调制规则和检测规则,以简化发送预编码的优化,这极大地限制了SLP的灵活性和通信质量服务质量(QOS)。为了克服这些方法的性能瓶颈,在这封信中,我们提出了一种基于端到端学习的方法,以共同优化调制订单,发送预编码和SLP通信系统的接收检测。开发了由调制顺序预测(MOP-NN)模块和符号级的预编码和检测(SLPD-NN)模块组成的神经网络,以解决此数学上棘手的问题。模拟验证了拟议的端到端学习方法带来的显着性能改善。
Conventional symbol-level precoding (SLP) designs assume fixed modulations and detection rules at the receivers for simplifying the transmit precoding optimizations, which greatly limits the flexibility of SLP and the communication quality-of-service (QoS). To overcome the performance bottleneck of these approaches, in this letter we propose an end-to-end learning based approach to jointly optimize the modulation orders, the transmit precoding and the receive detection for an SLP communication system. A neural network composed of the modulation order prediction (MOP-NN) module and the symbol-level precoding and detection (SLPD-NN) module is developed to solve this mathematically intractable problem. Simulations verify the notable performance improvement brought by the proposed end-to-end learning approach.