论文标题
多模式动态图网络:用于疾病诊断和分类的结构和功能连接耦合
Multi-modal Dynamic Graph Network: Coupling Structural and Functional Connectome for Disease Diagnosis and Classification
论文作者
论文摘要
多模式神经影像学技术极大地促进了效率和诊断准确性,这在发现客观疾病生物标志物方面提供了互补的信息。传统的深度学习方法,例如卷积神经网络,忽略节点之间的关系,无法捕获图中的拓扑特性。事实证明,图形神经网络在建模大脑连接网络和相关疾病特异性模式方面非常重要。但是,大多数现有的图形方法明确需要已知的图形结构,这在复杂的大脑系统中不可用。特别是在异质的多模式大脑网络中,考虑到模型间依赖性,建模大脑区域之间的相互作用存在巨大挑战。在这项研究中,我们提出了一个多模式动态图卷积网络(MDGCN),用于结构和功能性脑网络学习。我们的方法受益于建模模式间表示,并将细心的多模型关联与具有组成对应矩阵的动态图相关联。此外,提出了双边图卷积层,以根据多模式关联汇总多模式表示。在三个数据集上进行的广泛实验证明了我们提出的方法在疾病分类方面具有优势,在预测轻度认知障碍(MCI),帕金森氏病(PD)和精神分裂症(SCHZ)方面的准确性为90.4%,85.9%和98.3%。此外,我们对对应矩阵的统计评估与以前的生物标志物证据表现出很高的对应关系。
Multi-modal neuroimaging technology has greatlly facilitated the efficiency and diagnosis accuracy, which provides complementary information in discovering objective disease biomarkers. Conventional deep learning methods, e.g. convolutional neural networks, overlook relationships between nodes and fail to capture topological properties in graphs. Graph neural networks have been proven to be of great importance in modeling brain connectome networks and relating disease-specific patterns. However, most existing graph methods explicitly require known graph structures, which are not available in the sophisticated brain system. Especially in heterogeneous multi-modal brain networks, there exists a great challenge to model interactions among brain regions in consideration of inter-modal dependencies. In this study, we propose a Multi-modal Dynamic Graph Convolution Network (MDGCN) for structural and functional brain network learning. Our method benefits from modeling inter-modal representations and relating attentive multi-model associations into dynamic graphs with a compositional correspondence matrix. Moreover, a bilateral graph convolution layer is proposed to aggregate multi-modal representations in terms of multi-modal associations. Extensive experiments on three datasets demonstrate the superiority of our proposed method in terms of disease classification, with the accuracy of 90.4%, 85.9% and 98.3% in predicting Mild Cognitive Impairment (MCI), Parkinson's disease (PD), and schizophrenia (SCHZ) respectively. Furthermore, our statistical evaluations on the correspondence matrix exhibit a high correspondence with previous evidence of biomarkers.