论文标题

可整合的热传导模型

Integrable heat conduction model

论文作者

Franceschini, Chiara, Frassek, Rouven, Giardinà, Cristian

论文摘要

我们考虑了热传导的随机过程,其中通过不当Beta分布将能量沿着最近的邻居站点之间的链重新分布。类似于著名的基普尼斯 - 马尔建图(KIPNIS-MARCHIORO-PRESUTTI(KMP)模型),有限的链与两个储层在其末端耦合在一起,它们在不同温度下工作时打破了能量的保护。与KMP的不同,此处考虑的模型是可集成的,并且可以以封闭形式写入非平衡稳态的$ n $ - 点相关函数。由于精确的解决方案,因此可以直接证明该系统处于“局部平衡”中,并通过产品度量在宏观尺度上进行了描述。通过非紧凑型旋转的开放的海森堡链对模型的描述来表现出来。该模型的代数公式允许将其二元性关系与纯粹吸收的粒子系统解释为表示的变化。

We consider a stochastic process of heat conduction where energy is redistributed along a chain between nearest neighbor sites via an improper beta distribution. Similar to the well-known Kipnis-Marchioro-Presutti (KMP) model, the finite chain is coupled at its ends with two reservoirs that break the conservation of energy when working at different temperatures. At variance with KMP, the model considered here is integrable and one can write in a closed form the $n$-point correlation functions of the non-equilibrium steady state. As a consequence of the exact solution one can directly prove that the system is in a `local equilibrium' and described at the macro-scale by a product measure. Integrability manifests itself through the description of the model via the open Heisenberg chain with non-compact spins. The algebraic formulation of the model allows to interpret its duality relation with a purely absorbing particle system as a change of representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源