论文标题

学习潜在的结构性因果模型

Learning Latent Structural Causal Models

论文作者

Subramanian, Jithendaraa, Annadani, Yashas, Sheth, Ivaxi, Ke, Nan Rosemary, Deleu, Tristan, Bauer, Stefan, Nowrouzezahrai, Derek, Kahou, Samira Ebrahimi

论文摘要

因果学习长期以来一直与基本因果机制的准确恢复有关。这种因果建模可以更好地解释分布数据的数据。因果学习的先前工作假设给出了高级因果变量。但是,在机器学习任务中,经常在低级数据(例如图像像素或高维向量)上运行。在这种设置中,整个结构性因果模型(SCM) - 结构,参数,\ textit {and}高级因果变量 - 没有观察到,需要从低级数据中学到。给定低级数据,我们将此问题视为潜在SCM的贝叶斯推断。对于线性高斯添加噪声SCM,我们提出了一种可拖动的近似推理方法,该方法通过随机,已知的干预措施对潜在SCM的因果变量,结构和参数进行关节推断。实验是在合成数据集和因果生成的图像数据集上进行的,以证明我们方法的功效。我们还通过看不见的干预措施进行图像生成,从而验证了所提出的因果模型的分布概括。

Causal learning has long concerned itself with the accurate recovery of underlying causal mechanisms. Such causal modelling enables better explanations of out-of-distribution data. Prior works on causal learning assume that the high-level causal variables are given. However, in machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors. In such settings, the entire Structural Causal Model (SCM) -- structure, parameters, \textit{and} high-level causal variables -- is unobserved and needs to be learnt from low-level data. We treat this problem as Bayesian inference of the latent SCM, given low-level data. For linear Gaussian additive noise SCMs, we present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent SCM from random, known interventions. Experiments are performed on synthetic datasets and a causally generated image dataset to demonstrate the efficacy of our approach. We also perform image generation from unseen interventions, thereby verifying out of distribution generalization for the proposed causal model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源