论文标题

全息图作为非本地量子计算的资源

Holography as a resource for non-local quantum computation

论文作者

Dolev, Kfir, Cree, Sam

论文摘要

如果两个方共享足够的纠缠,他们可以通过非本地量子计算在共享的两部分状态上实现任何通道 - 由本地操作和单一同时进行量子通信组成的协议。这种协议可以在ADS/CFT对应关系中发生,两方由CFT区域代表,全息状态作为提供必要的纠缠的资源。该边界非本地计算对于大量ADS理论中通道的局部实现是双重的。相邻的CFT区域之间的纠缠使纠缠所阻碍了以前关于这一现象的工作,并试图通过假设某些地区无关紧要来避免此问题。但是,这些地区的缺乏引入了暴力现象,以防止CFT实施该协议。取而代之的是,我们通过使用CFT的有限记忆量子模拟来解决不同的纠缠问题。我们表明,圆形晶格上的任何有限内存量子系统都会产生非本地量子计算的方案。在全息CFT的量子模拟的情况下,我们仔细地表明,该协议实现了由局部散装动力学执行的通道。在大容量中关于量子计算的合理的物理假设下,我们的结果表明,对于任何多项式复杂的统一统一的,都可以进行非本地量子计算。最后,我们提供了一个全息代码的具体示例,其大量动力学对应于Clifford Gate,并使用我们的结果表明这对应于此门的非本地量子计算协议。

If two parties share sufficient entanglement, they are able to implement any channel on a shared bipartite state via non-local quantum computation -- a protocol consisting of local operations and a single simultaneous round of quantum communication. Such a protocol can occur in the AdS/CFT correspondence, with the two parties represented by regions of the CFT, and the holographic state serving as a resource to provide the necessary entanglement. This boundary non-local computation is dual to the local implementation of a channel in the bulk AdS theory. Previous work on this phenomenon was obstructed by the divergent entanglement between adjacent CFT regions, and tried to circumvent this issue by assuming that certain regions are irrelevant. However, the absence of these regions introduces violent phenomena that prevent the CFT from implementing the protocol. Instead, we resolve the issue of divergent entanglement by using a finite-memory quantum simulation of the CFT. We show that any finite-memory quantum system on a circular lattice yields a protocol for non-local quantum computation. In the case of a quantum simulation of a holographic CFT, we carefully show that this protocol implements the channel performed by the local bulk dynamics. Under plausible physical assumptions about quantum computation in the bulk, our results imply that non-local quantum computation can be performed for any polynomially complex unitary with a polynomial amount of entanglement. Finally, we provide a concrete example of a holographic code whose bulk dynamics correspond to a Clifford gate, and use our results to show that this corresponds to a non-local quantum computation protocol for this gate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源