论文标题

随机单位,稳健性和纠缠的复杂性

Random unitaries, Robustness, and Complexity of Entanglement

论文作者

Odavić, J., Torre, G., Mijić, N., Davidović, D., Franchini, F., Giampaolo, S. M.

论文摘要

人们普遍认为,在存在通用电路中纠缠的动态可以通过了解纠缠频谱的统计特性的知识来预测。我们通过应用不同的本地大门产生的类似大都市的纠缠冷却算法来测试这一假设,并在共享相同统计量的各州上生成。我们采用独特模型的基态,即具有横向场的一维iSing链,但属于不同的宏观阶段,例如顺磁性,磁有序和拓扑沮丧的链。令人惊讶的是,我们观察到,纠缠动态不仅在很大程度上取决于不同的门集,而且还取决于阶段,这表明不同阶段可以具有不同类型的纠缠(我们将其表征为纯局部,类似于GHz的状态,类似于W-State),并且具有不同程度的抗气性。我们的工作强调了这样一个事实,即仅纠缠频谱的知识不足以确定其动态,从而证明了其作为表征工具的不完整。此外,它显示了区域和非本地约束之间的微妙相互作用。

It is widely accepted that the dynamic of entanglement in presence of a generic circuit can be predicted by the knowledge of the statistical properties of the entanglement spectrum. We tested this assumption by applying a Metropolis-like entanglement cooling algorithm generated by different sets of local gates, on states sharing the same statistic. We employ the ground states of a unique model, namely the one-dimensional Ising chain with a transverse field, but belonging to different macroscopic phases such as the paramagnetic, the magnetically ordered, and the topological frustrated ones. Quite surprisingly, we observe that the entanglement dynamics are strongly dependent not just on the different sets of gates but also on the phase, indicating that different phases can possess different types of entanglement (which we characterize as purely local, GHZ-like, and W-state-like) with different degree of resilience against the cooling process. Our work highlights the fact that the knowledge of the entanglement spectrum alone is not sufficient to determine its dynamics, thereby demonstrating its incompleteness as a characterization tool. Moreover, it shows a subtle interplay between locality and non-local constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源