论文标题
$ Q $ -BAKER的对称函数概括 - 前注射和Selberg型积分
Symmetric function generalizations of the $q$-Baker--Forrester ex-conjecture and Selberg-type integrals
论文作者
论文摘要
众所周知,著名的Selberg积分等同于Morris Constant术语身份。 1998年,贝克(Baker)和福雷斯特(Forrester)推测了$ q $ - 莫里斯恒定任期身份的概括。这一猜想在2015年由Károlyi,Nagy,Petrov和Volkov证明并扩展了。在本文中,我们获得了$ Q $ -Baker-Baker-Forterster-Forterster-forterster-forterter-fightrester-forters contenture。其中包括:(i)$ q $ -baker-完整的对称功能和麦克唐纳多项式的产品的$ q $ baker-forrester型常数术语身份; (ii)对KNPV结果的完整对称函数概括。
It is well-known that the famous Selberg integral is equivalent to the Morris constant term identity. In 1998, Baker and Forrester conjectured a generalization of the $q$-Morris constant term identity. This conjecture was proved and extended by Károlyi, Nagy, Petrov and Volkov in 2015. In this paper, we obtain two symmetric function generalizations of the $q$-Baker--Forrester ex-conjecture. These includes: (i) a $q$-Baker--Forrester type constant term identity for a product of a complete symmetric function and a Macdonald polynomial; (ii) a complete symmetric function generalization of KNPV's result.