论文标题

标准嵌入式火车轨道和伪anosov地图,具有最小扩展因子

Standardly embedded train tracks and pseudo-Anosov maps with minimum expansion factor

论文作者

Hironaka, Eriko, Tsang, Chi Cheuk

论文摘要

我们表明,给定一个完全函数的伪anosov地图$ f:s $ f:s $,其穿刺至少在两个轨道上,在$ f $的情况下,扩展因子$λ(f)$满足不平等$λ(f)^{|χ(S) \ sqrt {5}} {2} \大约1.61803 $是黄金比率。证明涉及对标准嵌入式火车轨道的研究,以及在其重量空间上定义的瑟斯顿象征性形式。

We show that given a fully-punctured pseudo-Anosov map $f:S \to S$ whose punctures lie in at least two orbits under the action of $f$, the expansion factor $λ(f)$ satisfies the inequality $λ(f)^{|χ(S)|} \ge μ^4 \approx 6.85408$, where $μ= \frac{1 + \sqrt{5}}{2} \approx 1.61803$ is the golden ratio. The proof involves a study of standardly embedded train tracks, and the Thurston symplectic form defined on their weight space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源