论文标题
剪切流中的液滴动力学模型减少了有限毛细血管数
A reduced model for droplet dynamics in shear flows at finite capillary numbers
论文作者
论文摘要
我们提出了Maffettone-Minale(MM)模型的扩展,以预测剪切流中椭圆形液滴的动力学。传统上,MM模型的参数是在用于小变形的扰动理论的框架中检索的,即应用于stokes方程的小毛细管数($ \ mbox {ca} \ ll 1 $)。在这项工作中,我们采用了一条新颖的路线,因为我们确定了有限毛细血管数($ \ mbox {ca} \ sim {\ cal o}(1)$)的模型参数,而无需依赖扰动理论结果,同时保留了在蠕变的时间和稳定的时间和稳定的变形方面的现实代表,并通过滴水量$ nintio nintio $ ninter $ perio $ perio $ a in nine of ciscc $ a in nirection $ a in C. $ a and canccc $ a and cancccect的效果和稳定表示。该扩展的MM(EMM)模型通过使用浸入边界 - 晶格Boltzmann(IB -LB)数值技术的Stokes方程的数值模拟对液滴变形过程的独立表征。在EMM模型中还解决了液滴分解的问题。
We propose an extension of the Maffettone-Minale (MM) model to predict the dynamics of an ellipsoidal droplet in a shear flow. The parameters of the MM model are traditionally retrieved in the framework of the perturbation theory for small deformations, i.e., small capillary numbers ($\mbox{Ca} \ll 1$) applied to Stokes equations. In this work, we take a novel route, in that we determine the model parameters at finite capillary numbers ($\mbox{Ca}\sim {\cal O}(1)$) without relying on perturbation theory results, while retaining a realistic representation in creeping time and steady deformation attained by the droplet for different realizations of the viscosity ratio $λ$ between the inner and the outer fluids. This extended MM (EMM) model hinges on an independent characterization of the process of droplet deformation via numerical simulations of Stokes equations employing the Immersed Boundary - Lattice Boltzmann (IB-LB) numerical techniques. Issues on droplet breakup are also addressed and discussed within the EMM model.