论文标题

通过神经网络全身预测模型计划协调的人类机器人运动

Planning Coordinated Human-Robot Motions with Neural Network Full-Body Prediction Models

论文作者

Kratzer, Philipp, Toussaint, Marc, Mainprice, Jim

论文摘要

数值优化已成为计划机器人平滑运动轨迹的流行方法。但是,当与人类共享空间时,保持适当的安全,舒适性和效率仍然充满挑战。尤其是这样,因为人类将自己的行为适应机器人的行为,从而提出了复杂的计划和预测的需求。在本文中,我们提出了一种基于优化的运动计划算法,该算法生成机器人运动,同时在数据驱动的预测模型下同时最大化人类轨迹的可能性。考虑计划和预测共同使我们能够在人类机器人状态空间中制定客观和约束功能。该方法的关键是基于专用的复发神经网络的可区分人类预测模型的潜在空间修饰符。这些修饰符允许在运动优化中改变人类的预测。我们使用公开可用的Mogaze数据集经验评估我们的方法。我们的结果表明,所提出的框架优于当前的基线,用于规划切换轨迹并避免机器人与人之间的碰撞。我们的实验证明了协作运动轨迹,其中人类的预测和机器人计划彼此适应。

Numerical optimization has become a popular approach to plan smooth motion trajectories for robots. However, when sharing space with humans, balancing properly safety, comfort and efficiency still remains challenging. This is notably the case because humans adapt their behavior to that of the robot, raising the need for intricate planning and prediction. In this paper, we propose a novel optimization-based motion planning algorithm, which generates robot motions, while simultaneously maximizing the human trajectory likelihood under a data-driven predictive model. Considering planning and prediction together allows us to formulate objective and constraint functions in the joint human-robot state space. Key to the approach are added latent space modifiers to a differentiable human predictive model based on a dedicated recurrent neural network. These modifiers allow to change the human prediction within motion optimization. We empirically evaluate our method using the publicly available MoGaze dataset. Our results indicate that the proposed framework outperforms current baselines for planning handover trajectories and avoiding collisions between a robot and a human. Our experiments demonstrate collaborative motion trajectories, where both, the human prediction and the robot plan, adapt to each other.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源