论文标题

IQUAFLOW:一个新框架来衡量图像质量

IQUAFLOW: A new framework to measure image quality

论文作者

Gallés, P., Takats, K., Hernández-Cabronero, M., Berga, D., Pega, L., Riordan-Chen, L., Garcia, C., Becker, G., Garriga, A., Bukva, A., Serra-Sagristà, J., Vilaseca, D., Marín, J.

论文摘要

IQUAFLOF是一个新的图像质量框架,可提供一组评估图像质量的工具。用户可以添加可以轻松集成的自定义指标。此外,IQUAFLOF可以通过使用在图像上训练的AI模型的性能来衡量质量。例如,这也有助于使对原始数据集的几种修改的性能下降进行研究,并在不同级别的有损压缩后重建图像。卫星图像将是一个用例示例,因为它们在下载之前通常会被压缩。在这种情况下,优化问题包括找到最小的图像,这些图像提供了足够的质量,以满足深度学习算法所需的性能。因此,对IQUAFLOF的研究适合这种情况。所有这些开发都包裹在MLFlow:一种交互式工具中,用于可视化和总结结果。本文档描述了不同的用例,并提供了指向其各自存储库的链接。为了简化新研究的创建,我们包括一个曲奇的存储库。源代码,问题跟踪器和上述存储库都在github https://github.com/satellogic/iquaflow上托管。

IQUAFLOW is a new image quality framework that provides a set of tools to assess image quality. The user can add custom metrics that can be easily integrated. Furthermore, iquaflow allows to measure quality by using the performance of AI models trained on the images as a proxy. This also helps to easily make studies of performance degradation of several modifications of the original dataset, for instance, with images reconstructed after different levels of lossy compression; satellite images would be a use case example, since they are commonly compressed before downloading to the ground. In this situation, the optimization problem consists in finding the smallest images that provide yet sufficient quality to meet the required performance of the deep learning algorithms. Thus, a study with iquaflow is suitable for such case. All this development is wrapped in Mlflow: an interactive tool used to visualize and summarize the results. This document describes different use cases and provides links to their respective repositories. To ease the creation of new studies, we include a cookie-cutter repository. The source code, issue tracker and aforementioned repositories are all hosted on GitHub https://github.com/satellogic/iquaflow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源