论文标题
共同信息减轻抽象性摘要中的幻觉
Mutual Information Alleviates Hallucinations in Abstractive Summarization
论文作者
论文摘要
尽管从抽象性摘要模型产生的语言质量取得了重大进展,但这些模型仍然表现出幻觉的趋势,即源文档不支持的输出内容。许多作品试图解决或至少发现成功的问题,而成功的问题有限。在本文中,我们确定了一个简单的标准,在该标准下,模型在生成过程中更有可能分配幻觉内容的可能性更大:高模型不确定性。这一发现为幻觉提供了一个潜在的解释:模型默认值偏爱具有高边缘概率的文本,即训练集中的高频发生,而当不确定延续时。它还激发了在解码期间进行实时干预的可能路线,以防止这种幻觉。我们提出了一种解码策略,该策略切换到对源和目标令牌的点上的相互信息进行优化,而不是纯粹的目标令牌的概率 - 模型表现出不确定性时。 XSUM数据集上的实验表明,我们的方法降低了幻觉令牌的可能性,同时保持了胭脂和伯特人的表现最佳的解码策略。
Despite significant progress in the quality of language generated from abstractive summarization models, these models still exhibit the tendency to hallucinate, i.e., output content not supported by the source document. A number of works have tried to fix--or at least uncover the source of--the problem with limited success. In this paper, we identify a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty. This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, i.e., high-frequency occurrences in the training set, when uncertain about a continuation. It also motivates possible routes for real-time intervention during decoding to prevent such hallucinations. We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty. Experiments on the XSum dataset show that our method decreases the probability of hallucinated tokens while maintaining the Rouge and BertS scores of top-performing decoding strategies.