论文标题

路径关联规则挖掘

Path association rule mining

论文作者

Sasaki, Yuya

论文摘要

图形结合规则挖掘是一种用于发现图数据规律性的数据挖掘技术。在这项研究中,我们提出了一个新颖的概念,即{\ IT路径关联规则挖掘},以发现经常出现在给定图中的路径模式的相关性。在我们的概念中应用了可达性路径模式(即存在从顶点到另一个顶点的路径的存在)以发现各种规律性。我们证明了问题是NP-HARD,并且我们开发了一种有效的算法,其中抗单调性质用于路径模式。随后,我们开发出近似和并行化技术,以有效且可扩展地发现规则。我们使用现实生活图来实验验证有效的

Graph association rule mining is a data mining technique used for discovering regularities in graph data. In this study, we propose a novel concept, {\it path association rule mining}, to discover the correlations of path patterns that frequently appear in a given graph. Reachability path patterns (i.e., existence of paths from a vertex to another vertex) are applied in our concept to discover diverse regularities. We show that the problem is NP-hard, and we develop an efficient algorithm in which the anti-monotonic property is used on path patterns. Subsequently, we develop approximation and parallelization techniques to efficiently and scalably discover rules. We use real-life graphs to experimentally verify the effective

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源