论文标题

峰值神经网络能效的分析估计

An Analytical Estimation of Spiking Neural Networks Energy Efficiency

论文作者

Lemaire, Edgar, Cordone, Loic, Castagnetti, Andrea, Novac, Pierre-Emmanuel, Courtois, Jonathan, Miramond, Benoit

论文摘要

尖刺神经网络是一种神经网络,仅使用尖峰进行神经元进行通信。它们通常被视为古典神经网络的低功率替代品,但是很少有作品证明这些主张是正确的。在这项工作中,我们提出了一个指标,可以独立于特定硬件估算SNN的能源消耗。然后,我们将此指标应用于SNNS处理现实世界应用程序的三种不同数据类型(静态,动态和事件)的代表。结果,我们所有的SNN的效率是FNN的效率6到8倍。

Spiking Neural Networks are a type of neural networks where neurons communicate using only spikes. They are often presented as a low-power alternative to classical neural networks, but few works have proven these claims to be true. In this work, we present a metric to estimate the energy consumption of SNNs independently of a specific hardware. We then apply this metric on SNNs processing three different data types (static, dynamic and event-based) representative of real-world applications. As a result, all of our SNNs are 6 to 8 times more efficient than their FNN counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源