论文标题
重力年轻恒星对象调查-IX。 T托里恒星的星/磁盘相互作用区域中热氢气的空间分辨运动学
The GRAVITY Young Stellar Object survey -- IX. Spatially resolved kinematics of hot hydrogen gas in the star/disk interaction region of T Tauri stars
论文作者
论文摘要
目的:我们的目标是通过干涉方法在空间和频谱上解析BR-gamma氢发射线,以便检查太阳样年轻恒星物体样品的内积盘中氢气发射区域的运动学。目的是确定样品来源之间的趋势和类别,并讨论它们是否可以与T Tauri恒星中与Br-Gamma发射相关的不同起源机制,主要是最突出的磁层积聚。 方法:我们首次使用VLTI重力,记录光谱和跨NIR K波段中BR-GAMMA线的光谱分散的干涉量观察到了七个T牛里星的样品。我们用它们来提取BR-gamma发射区域的大小和光上心移位。为了协助解释,我们还利用磁层积聚的辐射转移模型来建立预期的干涉测量标志基线,如果积聚是BR-GAMMA发射的主要驱动力。 结果:从我们的样品中,我们发现七个T〜Tauri恒星中的五个显示出一个发射区域,在磁层截断方面广泛期望的范围内半流量半径。五个物体中的两个还显示BR-GAMMA发射主要起源于旋转半径内,而另外两个对象则显示出延长的发射,以超过10 r $ _*$的比例,其中一个甚至超过K〜频段连续半频率半径11.3 r $ _*$。 结论:我们发现有力的证据表明,对于样品中两个最弱的增生器,磁层积聚是BR-gamma辐射的主要驱动力。其余资源的结果表明,以流出形式(例如恒星或磁盘风的流出形式)来自空间扩展的排放组件产生的部分或强有力的贡献。
Aims: We aim to spatially and spectrally resolve the Br-gamma hydrogen emission line with the methods of interferometry in order to examine the kinematics of the hydrogen gas emission region in the inner accretion disk of a sample of solar-like young stellar objects. The goal is to identify trends and categories among the sources of our sample and to discuss whether or not they can be tied to different origin mechanisms associated with Br-gamma emission in T Tauri stars, chiefly and most prominently magnetospheric accretion. Methods: We observed a sample of seven T Tauri stars for the first time with VLTI GRAVITY, recording spectra and spectrally dispersed interferometric quantities across the Br-gamma line in the NIR K-band. We use them to extract the size of the Br-gamma emission region and the photocenter shifts. To assist in the interpretation, we also make use of radiative transfer models of magnetospheric accretion to establish a baseline of expected interferometric signatures if accretion is the primary driver of Br-gamma emission. Results: From among our sample, we find that five of the seven T~Tauri stars show an emission region with a half-flux radius in the range broadly expected for magnetospheric truncation. Two of the five objects also show Br-gamma emission primarily originating from within the corotation radius, while two other objects exhibit extended emission on a scale beyond 10 R$_*$, one of them even beyond the K~band continuum half-flux radius of 11.3 R$_*$. Conclusions: We find strong evidence to suggest that for the two weakest accretors in the sample, magnetospheric accretion is the primary driver of Br-gamma radiation. The results for the remaining sources imply either partial or strong contributions coming from spatially extended emission components in the form of outflows, such as stellar or disk winds.