论文标题

Coron的关键车道系统问题

Coron's problem for the critical Lane-Emden system

论文作者

Jin, Sangdon, Kim, Seunghyeok

论文摘要

在本文中,我们解决了关键车道填充系统\ [\ [case}-ΔU= | V |^{p-1} v&\ mbox {in}ω_________________________________v= | u | ω_ε,\ end {cases} \] 其中$ n \ ge 4 $,$ p \ in(1,\ frac {n-1} {n-2})$,$ \ frac {1} {p+1}+\ frac {1} {q+1} = \ frac {n-2} {n-2} {n-2} {n} {n} $ and $ a $ aby $ a $ aind y Inup aind and and and a ranuius dombius。我们证明该系统承认一个积极解决方案家族,将孔周围集中在孔中心为$ε\至0 $,也获得了解决方案的具体定性描述。据我们所知,这是关键的车道系统在有限域上的第一个存在结果,而自1990年代初期,由于Mitidieri(1993)[30]和van der der vorst(1991),不存在星形有界域的不存在结果[30] [36]。

In this paper, we address the solvability of the critical Lane-Emden system \[\begin{cases} -Δu=|v|^{p-1}v &\mbox{in } Ω_ε,\\ -Δv=|u|^{q-1}u &\mbox{in } Ω_ε,\\ u=v=0 &\mbox{on } \partial Ω_ε, \end{cases}\] where $N \ge 4$, $p \in (1,\frac{N-1}{N-2})$, $\frac{1}{p+1} + \frac{1}{q+1}=\frac{N-2}{N}$, and $Ω_ε$ is a smooth bounded domain with a small hole of radius $ε> 0$. We prove that the system admits a family of positive solutions that concentrate around the center of the hole as $ε\to 0$, obtaining a concrete qualitative description of the solutions as well. To the best of our knowledge, this is the first existence result for the critical Lane-Emden system on a bounded domain, while the non-existence result on star-shaped bounded domains has been known since the early 1990s due to Mitidieri (1993) [30] and van der Vorst (1991) [36].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源