论文标题

DAXBENCH:通过可微分物理的基准测试可变形的对象操纵

DaXBench: Benchmarking Deformable Object Manipulation with Differentiable Physics

论文作者

Chen, Siwei, Xu, Yiqing, Yu, Cunjun, Li, Linfeng, Ma, Xiao, Xu, Zhongwen, Hsu, David

论文摘要

可变形的物体操纵(DOM)对于日常和工业应用都至关重要。可区分物理模拟器的最新成功允许学习算法通过环境动态培训通过分析梯度来培训政策,从而显着促进了DOM算法的发展。但是,现有的DOM基准是基于单对象的或非差异的。这留下了1)特定于任务算法在其他任务上的性能以及2)基于可区分物理学的算法如何与一般非差异性算法进行比较的问题。在这项工作中,我们提出了Daxbench,这是一个可区分的DOM基准,具有宽阔的对象和任务覆盖率。 Daxbench包括9个具有挑战性的高保真模拟任务,涵盖了各种难度水平的绳索,布和液体操作。为了更好地了解一般算法在不同的DOM任务上的性能,我们对代表性的DOM方法进行了全面的实验,从计划到模仿学习和强化学习。此外,我们还基于可区分的物理学提供了对现有决策算法的仔细实证研究,并讨论了它们的局限性以及潜在的未来方向。

Deformable Object Manipulation (DOM) is of significant importance to both daily and industrial applications. Recent successes in differentiable physics simulators allow learning algorithms to train a policy with analytic gradients through environment dynamics, which significantly facilitates the development of DOM algorithms. However, existing DOM benchmarks are either single-object-based or non-differentiable. This leaves the questions of 1) how a task-specific algorithm performs on other tasks and 2) how a differentiable-physics-based algorithm compares with the non-differentiable ones in general. In this work, we present DaXBench, a differentiable DOM benchmark with a wide object and task coverage. DaXBench includes 9 challenging high-fidelity simulated tasks, covering rope, cloth, and liquid manipulation with various difficulty levels. To better understand the performance of general algorithms on different DOM tasks, we conduct comprehensive experiments over representative DOM methods, ranging from planning to imitation learning and reinforcement learning. In addition, we provide careful empirical studies of existing decision-making algorithms based on differentiable physics, and discuss their limitations, as well as potential future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源