论文标题
$ u(1)_r $ symmetric $ su(5)\ times u(1)_χ$ $ u(1)_r $ u(1)_χ$
Radiative Symmetry breaking, Cosmic Strings and Observable Gravity Waves in $U(1)_R$ symmetric $SU(5) \times U(1)_χ$
论文作者
论文摘要
我们在超对称$ su(5)\ times u(1)_χ$ ut模型的框架中实现了转移的混合膨胀,该模型为$ su(5)$的自发对称性破坏中出现的单极问题提供了自然解决方案。 $ u(1)_χ$对称性在通货膨胀结束后以中等规模裂开,从而产生拓扑稳定的宇宙字符串。以$g_nμ_s$为特征的这些字符串的重力相互作用强度上的普朗克绑定很容易满足$ u(1)_χ$对称性破坏量表,该量表取决于肠量表的初始边界条件。衰减的尺寸-5质子生命周期$ p \ rightarrow k^+ \barν$由color-triplet higgsinos介导,可满足SUSY Breaking Scale $ M _ {\ text {susy}}} {susy}}} \ gtrsim 12.5.5 $ tev的当前超级kamiokande界限。我们表明,凭借最小的Kähler潜力,柔软的超对称性破坏术语在将标量频谱索引$ n_s $带入planck的最新范围中起着至关重要的作用,尽管具有小张量的模式$ r \ lyssim 2.5 \ lyssim 2.5 \ times times times timess 10^{ - 6} $(-6} $(5)$ su(5)$ SU(5)$ suge Symetry symetry symetry smoterry spemmetry spemmetry spemmetry spemmetry spemmetry strage范围( m_α\ Lessim 2 \ times 10^{16} $)GEV。通过在Kähler潜力中采用非最低术语,张量表与尺度比率方法可观察到可观察的值($ r \ sillssim 10^{ - 3} $),其中$ su(5)$ SU(5)$ SUSMETRY Breaking Breaking scale $m_α\m_α\ simeq 2 \ simeq 2 \ times 10^{16} $ GEV。
We implement shifted hybrid inflation in the framework of supersymmetric $SU(5) \times U(1)_χ$ GUT model which provides a natural solution to the monopole problem appearing in the spontaneous symmetry breaking of $SU(5)$. The $U(1)_χ$ symmetry is radiatevely broken after the end of inflation at an intermediate scale, yielding topologically stable cosmic strings. The Planck's bound on the gravitational interaction strength of these strings, characterized by $G_N μ_s$ are easily satisfied with the $U(1)_χ$ symmetry breaking scale which depends on the initial boundary conditions at the GUT scale. The dimension-5 proton lifetime for the decay $p \rightarrow K^+ \barν$, mediated by color-triplet Higgsinos is found to satisfy current Super-Kamiokande bounds for SUSY breaking scale $M_{\text{SUSY}} \gtrsim 12.5$ TeV. We show that with minimal Kähler potential, the soft supersymmetry breaking terms play a vital role in bringing the scalar spectral index $n_s$ within the Planck's latest bounds, although with small tensor modes $r \lesssim 2.5 \times 10^{-6}$ and $SU(5)$ gauge symmetry breaking scale in the range ($2 \times 10^{15} \lesssim M_α \lesssim 2 \times 10^{16}$) GeV. By employing non-minimal terms in the Kähler potential, the tensor-to-scalar ratio approaches observable values ($r \lesssim 10^{-3}$) with the $SU(5)$ symmetry breaking scale $M_α \simeq 2 \times 10^{16}$ GeV.