论文标题

在大图中认证诱导的子图

Certifying Induced Subgraphs in Large Graphs

论文作者

Meyer, Ulrich, Tran, Hung, Tsakalidis, Konstantinos

论文摘要

我们介绍了I/O-Oftimal认证算法,用于二分图,以及分裂,阈值,两部分链和琐碎的完美图的类别。当输入图是类成员时,认证算法将返回以此类为特征的证书。否则,它将返回禁止的诱导子图作为非会员的证书。在带有$ n $顶点和$ m $边缘的图表上,我们的算法在最坏情况下或具有双部分链图的最佳$ o(\ text {stort {stort}(n + m))$ i/os $ i/os,并且证书以最佳i/os返回证书。我们提供了拆分和阈值图的实现,并提供了实验评估。

We introduce I/O-optimal certifying algorithms for bipartite graphs, as well as for the classes of split, threshold, bipartite chain, and trivially perfect graphs. When the input graph is a class member, the certifying algorithm returns a certificate that characterizes this class. Otherwise, it returns a forbidden induced subgraph as a certificate for non-membership. On a graph with $n$ vertices and $m$ edges, our algorithms take optimal $O(\text{sort}(n + m))$ I/Os in the worst case or with high probability for bipartite chain graphs, and the certificates are returned in optimal I/Os. We give implementations for split and threshold graphs and provide an experimental evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源