论文标题

克尔解决方案的周期性类似物:数值研究

Periodic analogues of the Kerr solutions: a numerical study

论文作者

Peraza, Javier, Reiris, Martín, Ortiz, Omar E.

论文摘要

近年来,具有非标准拓扑的黑洞配置或非标准渐近线已引起了很大的关注。在本文中,我们进行了旨在找到共旋转3+1真空黑孔的同轴构型的数值研究,理论上尚未证明存在和唯一性。瞄准的配置将扩展Myers/Korotkin-Nicolai的非旋转(静态)黑洞的同轴阵列。我们发现,仅当连续视野之间的分离大于仅取决于A和| J |的某个临界值大于某个临界值时,才存在具有给定值的给定值和地平线的角动量J的数值解决方案。我们还确定,溶液具有与Stockum的无限旋转圆柱体相同的刘易斯圆柱渐近造剂。在提到的临界值之下,旋转能似乎太大而无法维持全球平衡,并且奇异性与散装的有限距离显示。这种现象是斯托克姆的渐近塌陷的亲戚,与质量(每单位轴向长度)相比,角动量(轴向长度的每单位)达到临界值,这表现出来,这是由于刘易斯圆柱外部溶液的刘易斯类别的过渡而产生的。在黑洞的同轴阵列的背景下,这种非凡的现象似乎无法探索。埃尔盖斯和其他全球性能也详细介绍。

In recent years black hole configurations with non standard topology or with non-standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theoretically proven. The aimed configurations would extend Myers/Korotkin-Nicolai's family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis's cylindrical asymptotic as Stockum's infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum's asymptotic's collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis's class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源