论文标题

计算$ c(\ mathbb {o} _ {3,6})的最小距离,$ polar正交Grassmann代码使用基本方法

Computing the minimum distance of the $C(\mathbb{O}_{3,6})$ polar Orthogonal Grassmann code with elementary methods

论文作者

Gregory, Sarah, Piñero-González, Fernando, Rivera-Laboy, Doel, Southern, Lani

论文摘要

极性正交Grassmann代码$ C(\ Mathbb {O} _ {3,6})$是与$ Q^+(5,q)$的Grassmann嵌入的Grassmann嵌入相关的线性代码。在本手稿中,我们研究了此嵌入的最小距离。我们证明,极性正交的Grassmann代码$ C(\ Mathbb {o} _ {3,6})$的最小距离是$ q^3-q^3 $ for $ q $奇数和$ q $奇数和$ q^3 $偶数。我们的技术基于将正交空间划分为不同的集合,以便在每个分区上$ c(\ mathbb {o} _ {3,6})$确定,并通过评估skew--对称矩阵的确定因素进行评估。我们的边界来自计算特定类别多项式类别的零的基本代数方法。我们预计我们的技术可能会应用于其他极地格拉曼码。

The polar orthogonal Grassmann code $C(\mathbb{O}_{3,6})$ is the linear code associated to the Grassmann embedding of the Dual Polar space of $Q^+(5,q)$. In this manuscript we study the minimum distance of this embedding. We prove that the minimum distance of the polar orthogonal Grassmann code $C(\mathbb{O}_{3,6})$ is $q^3-q^3$ for $q$ odd and $q^3$ for $q$ even. Our technique is based on partitioning the orthogonal space into different sets such that on each partition the code $C(\mathbb{O}_{3,6})$ is identified with evaluations of determinants of skew--symmetric matrices. Our bounds come from elementary algebraic methods counting the zeroes of particular classes of polynomials. We expect our techniques may be applied to other polar Grassmann codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源