论文标题
Kähler组在CAT(0)立方体配合物上的相对几何作用
Relatively geometric actions of Kähler groups on CAT(0) cube complexes
论文作者
论文摘要
我们证明,对于$ \ text {pu}(n,1)的$ n \ geq 2 $,$ \ text {pu}(n,1)$在$ \ mathrm {cat}(0)$ cube Complex上不接受相对几何作用,在Einstein和Groves的典型中。结果,如果$γ$是非紧凑型半密布谎言组$ g $的不均匀晶格,而没有紧凑的因素,则承认对$ \ mathrm {cat}(cat}(0)$ cube complect采取相对几何作用,那么$ g $,则$ g $可与$ \ text {so}(so}(so}(so}(so}(so}(so}(so),}(so}(so}(so}),我们还证明,如果Kähler基团相对于残留有限的抛物线亚组是双曲线,并且在$ \ mathrm {Cat}(0)$ cube Complex上相对几何作用,那么它实际上是表面组。
We prove that for $n\geq 2$, a non-uniform lattice in $\text{PU}(n,1)$ does not admit a relatively geometric action on a $\mathrm{CAT}(0)$ cube complex, in the sense of Einstein and Groves. As a consequence, if $Γ$ is a non-uniform lattice in a non-compact semisimple Lie group $G$ without compact factors that admits a relatively geometric action on a $\mathrm{CAT}(0)$ cube complex, then $G$ is commensurable with $\text{SO}(n,1)$. We also prove that if a Kähler group is hyperbolic relative to residually finite parabolic subgroups, and acts relatively geometrically on a $\mathrm{CAT}(0)$ cube complex, then it is virtually a surface group.