论文标题
$ \ mathcal {o} _6 $ the twisted cubic外部的$ \ mathrm {pg}(3,q)$的发射矩阵(3,q)$
Incidence matrices for the class $\mathcal{O}_6$ of lines external to the twisted cubic in $\mathrm{PG}(3,q)$
论文作者
论文摘要
我们考虑了与扭曲立方体稳定器组下的轨道,点,点和线相连的射击空间$ \ mathrm {pg}(3,q)$的平面线和点线发病率矩阵的结构。在文献中,线条分为类,每个类都是线轨道的结合。在本文中,对于所有$ q $,即使又奇怪,我们确定了与名为$ \ Mathcal {o} _6 $的班级轨道家族相关的发生率矩阵。该类包含扭曲立方外部的线。所考虑的家庭包括所有$ \ Mathcal {O} _6 $ Orbits的基本部分,其完整分类是一个空旷的问题。
We consider the structures of the plane-line and point-line incidence matrices of the projective space $\mathrm{PG}(3,q)$ connected with orbits of planes, points, and lines under the stabilizer group of the twisted cubic. In the literature, lines are partitioned into classes, each of which is a union of line orbits. In this paper, for all $q$, even and odd, we determine the incidence matrices connected with a family of orbits of the class named $\mathcal{O}_6$. This class contains lines external to the twisted cubic. The considered family include an essential part of all $\mathcal{O}_6$ orbits, whose complete classification is an open problem.