论文标题

机器人操纵的主动探索

Active Exploration for Robotic Manipulation

论文作者

Schneider, Tim, Belousov, Boris, Chalvatzaki, Georgia, Romeres, Diego, Jha, Devesh K., Peters, Jan

论文摘要

尽管机器人技术和机器学习在近年来取得了重大进展,但机器人的操作仍然是一个未解决的问题。操纵的关键挑战之一是当操纵对象之间存在连续接触时,探索环境动力学。本文提出了一种基于模型的主动探索方法,该方法可以在稀疏的机器人操纵任务中有效学习。提出的方法使用概率模型集合估算信息增益目标,并部署模型预测控制(MPC)在线计划行动,以最大程度地提高预期奖励,同时还进行了定向探索。我们在模拟和真实的机器人中评估了我们提出的算法,并在倾斜的桌子上,在倾斜桌子上推动了挑战性的球,在该机器人上训练有素,在倾斜桌子上,Agent Agent Apriori不知道目标球位置。我们的真实机器人实验是在基于模型的复杂机器人操纵任务学习中主动探索的基本应用。

Robotic manipulation stands as a largely unsolved problem despite significant advances in robotics and machine learning in recent years. One of the key challenges in manipulation is the exploration of the dynamics of the environment when there is continuous contact between the objects being manipulated. This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks. The proposed method estimates an information gain objective using an ensemble of probabilistic models and deploys model predictive control (MPC) to plan actions online that maximize the expected reward while also performing directed exploration. We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method, on a challenging ball pushing task on tilted tables, where the target ball position is not known to the agent a-priori. Our real-world robot experiment serves as a fundamental application of active exploration in model-based reinforcement learning of complex robotic manipulation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源