论文标题
使用复发神经网络的O型星星恒星参数估计
O-type Stars Stellar Parameter Estimation Using Recurrent Neural Networks
论文作者
论文摘要
在本文中,我们提出了一种深度学习系统的方法,用于使用恒星光谱的光学区域估算O型恒星的亮度,有效温度和表面重力。在以前的工作中,我们比较了一组机器学习和深度学习算法,以建立一种可靠的方法,使用两种方法:恒星光谱模型的分类以及回归型任务中物理参数的估计。在这里,我们介绍了从人工神经网络的角度估算单个物理参数的过程,其能力具有低信噪比(S/N)的恒星光谱,以$ 20 s/n的边界。提出了三种不同的复发性神经网络系统,使用恒星光谱模型的训练过程,九个不同观察到的恒星光谱的测试以及与先前工作中估计的比较。此外,讨论了恒星光谱的表征方法,以减少系统的输入数据的维度并优化计算资源。
In this paper, we present a deep learning system approach to estimating luminosity, effective temperature, and surface gravity of O-type stars using the optical region of the stellar spectra. In previous work, we compare a set of machine learning and deep learning algorithms in order to establish a reliable way to fit a stellar model using two methods: the classification of the stellar spectra models and the estimation of the physical parameters in a regression-type task. Here we present the process to estimate individual physical parameters from an artificial neural network perspective with the capacity to handle stellar spectra with a low signal-to-noise ratio (S/N), in the $<$20 S/N boundaries. The development of three different recurrent neural network systems, the training process using stellar spectra models, the test over nine different observed stellar spectra, and the comparison with estimations in previous works are presented. Additionally, characterization methods for stellar spectra in order to reduce the dimensionality of the input data for the system and optimize the computational resources are discussed.