论文标题

规定大小和超级的子数字

Subdigraphs of prescribed size and outdegree

论文作者

Steiner, Raphael

论文摘要

在2006年,Noga Alon提出了以下开放问题:是否存在绝对常数$ c> 0 $,以至于每$ 2N $ -VERTEX DIGRAPH具有最低级别的最低级别的$ n $ n $ vertex子digraph,最低$ n $ vertex subdigraph,至少$ \ frac {s} {s} {2} {2} {2} {2} - c $?在本说明中,我们通过表明$ n $的任意价值为$ 2N $ -VERTEX锦标赛,最低限度$ s = n-1 $,其中每一个$ n $ n $ vertex子最多都包含一个超级级别的顶点$ \ frac {s} {2} - \ left(\ frac {1} {2} {2}+o(1)\ right)\ log_3(s)$。

In 2006, Noga Alon raised the following open problem: Does there exist an absolute constant $c>0$ such that every $2n$-vertex digraph with minimum out-degree at least $s$ contains an $n$-vertex subdigraph with minimum out-degree at least $\frac{s}{2}-c$ ? In this note, we answer this natural question in the negative, by showing that for arbitrarily large values of $n$ there exists a $2n$-vertex tournament with minimum out-degree $s=n-1$, in which every $n$-vertex subdigraph contains a vertex of out-degree at most $\frac{s}{2}-\left(\frac{1}{2}+o(1)\right)\log_3(s)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源