论文标题

部分可观测时空混沌系统的无模型预测

Neural Eigenfunctions Are Structured Representation Learners

论文作者

Deng, Zhijie, Shi, Jiaxin, Zhang, Hao, Cui, Peng, Lu, Cewu, Zhu, Jun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper introduces a structured, adaptive-length deep representation called Neural Eigenmap. Unlike prior spectral methods such as Laplacian Eigenmap that operate in a nonparametric manner, Neural Eigenmap leverages NeuralEF to parametrically model eigenfunctions using a neural network. We show that, when the eigenfunction is derived from positive relations in a data augmentation setup, applying NeuralEF results in an objective function that resembles those of popular self-supervised learning methods, with an additional symmetry-breaking property that leads to \emph{structured} representations where features are ordered by importance. We demonstrate using such representations as adaptive-length codes in image retrieval systems. By truncation according to feature importance, our method requires up to $16\times$ shorter representation length than leading self-supervised learning ones to achieve similar retrieval performance. We further apply our method to graph data and report strong results on a node representation learning benchmark with more than one million nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源